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Abstract

In this work we frame total scene capture as a spatio-
temporal novel view synthesis problem. From a monocular
smartphone camera video where camera poses are inferred
fromvisual inertial odometry, our task is to construct photo-
realistic imagery for new poses and timestamps that were
not originally captured, but are cohesive with the overall
scene. To this end, we propose that a space-time convolu-
tional neural network could act as a strong prior to learn
plausible scene reconstruction. For each scene we fit a 4D
space-time tensor with learned projection to directly gener-
ate any image captured from the scene given the camera’s
pose and timestamp. While this is a computationally ex-
pensive fixed cost per scene, at test time the space-time vol-
ume has already been fitted, so we simply run a single for-
ward pass through the network to generate the necessary
imagery. !

1. Introduction

Our goal is total scene capture - to be able to share with
high fidelity the complete dynamic, spatial and visual ex-
perience of any scene - including the waves lapping on the
shore at the beach, and the opalescent seashells at ones’ feet.
Specifically, we define a visual scene as all possible images
that could be captured within a given space-time volume.
While this may sound impossible in theory, in practice it
is straightforward to capture sparse samples of an appro-
priately bounded scene by e.g. filming a monocular video
while exploring the scene.

Unfortunately densely capturing the complete scene the
same way is impossible because the camera can only look in
one direction at a given time. Even a spherical camera can
only completely capture a small space-time volume. That is,
because it cannot capture all displacements of the camera at
all times, but it can capture all orientations of the camera in
a given position.

!'Supplementary animations available at this url.

Tt
Wuwue

L Ge
e W

QL LG
reaae

e
LG LSY

-

LA

Figure 1. Novel view synthesis samples from our model on the
synthetic armchairs dataset. This model was trained in 41 minutes
on a single NVIDIA K80 GPU.
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With the recent advances in deep generative model-
ing, specifically with generative adversarial networks, syn-
thetic imagery has received renewed attention and substan-
tial progress. We are especially inspired by the recent suc-
cess in utilizing deep convolutional neural networks as an
effective prior for a variety of image tasks without super-
vision, finding embeddings for 3D objects, rendering novel
views of scenes only from imagery found “’in the wild”, and
high fidelity consistent prediction of imagery from synthetic
scenes. Most of these works, however, either do not scale to
natural scenery or do not adequately account for dynamism.
To that end, we propose our deep space-time prior - a scene
specific learned 4D tensor combined with learned projec-
tion and up-sampling units.

Our developments build on a rich history of previous
work in capturing and understanding the physical world,
across disciplines such as novel view synthesis, 3D rep-
resentation learning, generative modeling, inverse graph-
ics, image based rendering, and photogrammetry. Most re-
cently, we extend on the work of [8] in finding a scene spe-
cific representation for novel view synthesis. Their method
produces high quality renderings and cohesive novel view
synthesis, but does not lend itself well to dynamic scenes
with motion. They employ a GRU to update a scene specific


https://docs.google.com/document/d/1hrFYQNDq6RmpYWD5PMrqeAnWNKB7Y5mdwnHFoG_VZaA/edit?usp=sharing

embedding for the object in latent voxel space, then use that
latent voxel space to decode. In our work we similarly learn
a scene specific embedding, but instead of requiring part of
the model to learn an encoding mechanism, we fit the input
space-time tensor with gradient descent. This is similar to
the approach in [7], where they learn a constant 4D tensor
at train time, which they manipulate with Adaptive Instance
Normalization to fit the desired parameters for a particu-
lar object. [9] attempt to learn a partial graphics pipeline,
applying neural networks to the task of rendering from a
coarse proxy geometry. Our approach is similar, except that
our proxy geometry contains a temporal dimension, and is
learned end-to-end rather than generated externally.

Meanwhile, [6] attacks the same problem, namely that of
“total scene capture” - but because their approach also re-
lies on a proxy geometry input, it lends itself especially well
to particular sets of dynamics, namely the dynamic appear-
ance of a static scene under different conditions. To mitigate
this, they use a semantic segmentation mask as input, so the
network can learn to ignore known dynamic objects such as
people, cars, etc. In contrast, our approach seeks to render
the scene with all dynamic objects present, but we do not
consider such a wide variety of ambient scene appearances.

Looking further back, the rich field of image-based ren-
dering contains numerous attempts to completely capture
the necessary information to reconstruct a dynamic scene.
[4] uses structure from motion to first reconstruct a proxy
geometry, then uses image-based rendering techniques to
re-render the input video from an optimized smooth camera
trajectory. Meanwhile, works like [2] use spatio-temporal
regularization and optimization techniques to find the opti-
mally consistent pixel from the input videos for each output
pixel. In contrast, we do not explicitly constrain our results
with any regularization, nor require images to be selected
from the input video.

Earlier still are the foundational works in image based
rendering for object and scene capture, the [1] and [5]. In
these techniques enough data is collected to form a reason-
able posterior estimate of the scene. In [1], by collecting
sufficient samples of the lightfield entering the volume con-
taining an object, one can then reconstruct the dense light-
field and sample arbitrary viewpoints. This requires a suffi-
ciently dense sampling of the lightfield, and it assumes the
object is static, with static lighting. [5] uses dense sampling
of the objects’ viewpoints to form a posterior estimate of the
object’s voxel occupancy grid. This also assumes the scene
is static, and requires dense sampling of viewpoints in order
to render realistic imagery.

2. Method
Our core contributions are two-fold:

1. We frame the bounded spatio-temporal scene capture
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Figure 2. Overview of the proposed architecture - including the
learned 4D input tensor, transformer, and learned upsampling
layer. Blue indicates components trained during Stage 1 of train-
ing, Green indicates components trained during Stage 2.

problem as novel view synthesis

2. To enable real-time inference on commodity hardware,
we devise to fit a single high dimensional space-time
tensor per scene.

Consider the total set of video frames possible to be cap-
tured from a given scene, S € RTXX XY XZx¢x0x¥ where
T,X,Y, Z, ¢, 0,1 denote the time, position and orientation
of the camera. Let s; be the pose for a frame at time ¢, with
associated extrinsic camera parameters x, y, z, ¢, 0, 1.

This leads us to define the local camera transfer function
I;t = F(T,X,Y,Z,$,0,1). We seek to find a transfer
function such that we minimize the loss:

E<I;t’lst) = HI;t - IStH (1)

over the full set of captured frames S.

2.1. Our Model

Our model is straightforward. As in [7] we fit a constant
4D tensor of size 32 x 32 x 32 x 32. This 4D tensor is
then projected to a canonical view volume as in [3] by a
fully-connected multilayer perceptron. This multilayer per-
ceptron generates a transform matrix from the input camera
pose and timestamp, which is then applied via trilinear sam-
pling to the learned input tensor. With this transformation,
the 4D spacetime volume is now in a canonical perspective
for rendering. Once transformed, the view is processed by
a learned projection unit, consisting of several 1x1 convo-
lutions to collapse the temporal and spatial dimensions into
a 2D image. In our experiments, training was stable in all
cases, but we managed to get higher fidelity results in less
time with component-wise training.



Figure 3. Novel view synthesis samples from our model trained on
real imagery captured from a smartphone. This model was trained
in 1 hour 35 minutes on a single NVIDIA K80 GPU.

2.2. Component-Wise Training

In component-wise training, we proceed to isolate and
train the 4D spatio-temporal tensor separately from the pro-
jection units. Specifically, we start by learning the tensor,
and using only the collapsing 1x1 convolutions and bilin-
ear upsampling to get a view appropriate for our loss. Once
this has converged, we switch to fractionally-strided convo-
lutions to learn upsampling filters to add further textures to
the image and increase the visual fidelity.

Thus our training regime breaks down into 2 steps:

1. First we train only the 4D input tensor and transformer.
We’ve found that by isolating this step in training our
model is less likely to overfit and more likely to gener-
ate geometrically plausible transitions between frames
throughout training. In order to compare the trans-
formed input tensor directly to the expected output im-
ages, we also train a projection unit of 1x1 convolu-
tions and use bilinear sampling to upscale the resulting
projection to the desired resolution.

2. Second, once the loss stops improving, we freeze the
4D input tensor, transformer, and projection layers.
We then swap out the bilinear upsampling for a series
of transposed convolutions to learn upsampling filters
from the data. We expect that because the input tensor
and its rotations are already parametrized, it’s easier
for the model to learn to apply realistic textures to the
resulting projection than it is to overfit to the other cues
of the camera pose.

2.3. Experiments

Our experiments are in progress but early qualitative re-
sults are quite promising. In a fraction of the time (minutes
versus hours or days) required to fit DeepVoxels or Holo-
GAN, our model can photorealistically reproduce novel
views at different timestamps and poses. We show some
samples from our model in Figures 2 and 3. The armchair
samples in 2 are a synthetic dataset used in [8], while the
apartment footage samples used in 3 were filmed from an
iPhone X with a custom application to record real-time vi-
sual inertial odometry for camera extrinsics per frame.

For both experiments, we used component-wise pre-
training as defined in 2.2. Specifically, we first fit the 4D
input tensor jointly with a transformation unit, a projection

unit, and a static bi-linear up-sampling layer. Once this has
converged, we freeze the input tensor and transformation
unit, and switch to learning a series of fractionally-strided
convolutions to up-sample the projected image to a higher
visual fidelity. Our final model, with just the projection and
up-sampling unit requires only 3MB for the forward pass.
This can enable real-time exploration of the rendered scenes
on a commodity smartphone.

3. Conclusion

In summary, we demonstrate that novel view synthesis
approaches bring us closer to sharing the full visual experi-
ence of dynamic scenes. We propose a specific implemen-
tation that works well in practice, and demonstrate com-
pelling early results. There are some challenges with fitting
the scene specific 4D tensor, namely that the space-time
voxel grid does not scale well to larger or more dynamic
scenes, and there is no interpretable or explicit geometry
in the model. At the same time, we propose component-
wise pretraining to mitigate some of these shortcomings,
and show some compelling results that will require further
investigation. Future work could investigate more com-
pressed representations of the scene, alternative capture
methodologies, or techniques that allow the learned com-
ponents to generalize across scenes.
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